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SUMMARY

In this report, the theoretical aspects and practical implemen-
tation of full waveform inversion (FWI) are derived and con-
sidered explicitly. Which makes FWI can be easily understood
also easily understood how to implement. Many references
treat FWI as an integral or the procedure transform into fre-
quency domain. Which is more or less obscure than the deriva-
tion in this paper. Our derivation is easy to understand and
explicitly describe the adjoint operator of Green’s function, re-
verse propagation and some other terminologies for FWI. Then
we implement the FWI in 1D medium. Because the scheme of
finite difference (FD) is 2-order in time and 2-order in space,
so the large time interval should be chosen, thus results in the
narrow of frequency range. For seismic record, which may
be dominated by low frequency, therefore, directly applying
multi-scale do not improve the result too much. After many
iterations, the residual data becomes much more enrich of be-
ing high frequency. Then multi-scale scheme can be employed
to smooth the residual data. Numerical results show that the
residual converges to small value while the velocity model still
change subtle.

INTRODUCTION

FWI and FWI with the combination with multi-scale scheme
can be found in many publications. To save space, these refer-
ences do not contain in this part.

THEORY

In this part, the explicit matrix and vector multiplications are
used to derive FWI. Forward problems can be stated using

p(xr, t) =
∫

V
G(xr, t;xs)∗ s(xs, t)dxs (1)

Equation (1) is an elegant expression. Which can be re-written
using matrix notation
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(2)

By re-writing the forward problem in equation 1, the continu-
ous solution can be represented by discrete form thus for every
fixed space point, equation 2 implies the solution to wave equa-
tion. By combining the data residual, equation 2 can be used

to express the misfit function.
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Equation 3 is the discrete expression of misfit function using
inner product. Another equivalent version is
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In equation 4, transposed Green’s function matrix behaves like
a cross correlation process instead of being a convolution. To
calculate two latter terms, we can flip the residual vector and
transpose the matrix induced by Green’s function, thus con-
volution process is obtained with a reversed time sequence of
residual waveform.
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where prime denotes the reversed residual data. Another thing
is even though we re-write a part of equation 4 by equation 5,
the gap is that misfit function in equation 4 is the inner product
time by time from the first time to the end. But the wave-field
obtained from equation 5 by forward modeling is reversed, in
other words, at the first time, we get the value of wave-field at
time nt, thus it cannot be used to calculate inner product (Be-
cause now we do not know the wave-field value of another for-
ward modeling using virtual source as excitation unless wave-
field of all time is saved). A smart scheme has been used to
overcome this disagreement. First we forward propagates the
wave-field excited by virtual source, then save the boundary
and the wave-field of last two time steps (how many time steps
are saved depends on which the scheme of time difference is
used, for one-step extrapolation we just need to wave one step.)
Then we start to backward propagate this saved wave-field at
the same time do the ordinary forward modeling using flipped
residual data as excitation then sum them over all of time steps.



NUMERICAL TESTS

In this part, first we implement the FWI to understand it in de-
tail. the results are as follows. Sorry about errata of ticks and
unit. In this project, the space interval is 18m, and label along
x axis should be sampling points not the real distance to some
reference point. In figure 1, the initial model is chosen so
that it closes to true model, which means initial model includes
all of the component of low wavenumber, so that we can use
gradient-based algorithm to find the minimum. Because the
misfit function of FWI is highly non-linear, if the initial model
far from the true model in the sense of some norm, then the
process of iteration would stuck in some local minimum very
fast. Figure 2 is the inverted model (orange line) overlaid on
true model (blue line), which shows inverted model approxi-
mates the true model much better than the initial model does
after 501 iterations. Because observed data is dominated by
low frequency and narrow frequency range as illustrated by
figure 4, if directly applying multi scale scheme, it seems that
does not work very well. However, after 501 iterations, figure
5 shows that the residual data contains high frequency com-
ponents much more than observed data. So we can smooth
the residual data to continue the inversion process. The nu-
merical examples show that misfit function becomes less if
the multi scale scheme is employed even though the velocity
model hardly changes. As stated before, in this project, if di-
rect applying multi scale scheme, the results does not improve
so much. Our explanation to this is because the frequency
range is too narrow.

CONCLUSION

In this report, we present a much easier way to understand FWI
and show how to implement it in explicit way. Then we imple-
ment the FWI in 1D medium. FD with 2-order in time axis and
2-order in x axis which requires large time sampling interval
thus results in the data dominated by low frequency. How-
ever, After iteration of some steps, the residual data contains
high frequency components much more than observed data. So
we can smooth the residual data to continue the inversion pro-
cess. In addition, in this project, we also check the reliability
of component of high and low frequency of data respectively.
Inverted results from data dominated by high frequency shows
higher apparent resolution then low frequency does. But which
resolution causes ambiguous and, maybe need to be smoothed
out for model use at the further processing flows. In other
words, results from high frequency is less reliable than the re-
sults form low frequency. In addition, data dominated by low
frequency converges much faster than data dominated by high
frequency does.
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Figure 1: a, True model (orange) overlaid on initial model
(blue). b, True model (blue) overlaid by inverted model (or-
ange). c, convergence curve.



Figure 2: Synthetic data as observed data to retrieve the veloc-
ity model. Which is dominated by low frequency because of
sampling interval along time axis is large.

Figure 3: Residual after 501 iterations. Which is input to multi
scale scheme of FWI.

Figure 4: Convergence curve by smoothing residual data at
501th iteration.

Figure 5: Convergence curve by smoothing residual data at
301th, 401th, 501th iterations.

Figure 6: Inverted result from data dominated by high fre-
quency

Figure 7: Inverted result from data dominated by high fre-
quency


